Reduced REDD1 expression contributes to activation of mTORC1 following electrically induced muscle contraction.

نویسندگان

  • Bradley S Gordon
  • Jennifer L Steiner
  • Charles H Lang
  • Leonard S Jefferson
  • Scot R Kimball
چکیده

Regulated in DNA damage and development 1 (REDD1) is a repressor of mTOR complex 1 (mTORC1) signaling. In humans, REDD1 mRNA expression in skeletal muscle is repressed following resistance exercise in association with activation of mTORC1. However, whether REDD1 protein expression is also reduced after exercise and if so to what extent the loss contributes to exercise-induced activation of mTORC1 is unknown. Thus, the purpose of the present study was to examine the role of REDD1 in governing the response of mTORC1 and protein synthesis to a single bout of muscle contractions. Eccentric contractions of the tibialis anterior were elicited via electrical stimulation of the sciatic nerve in male mice in either the fasted or fed state or in fasted wild-type or REDD1-null mice. Four hours postcontractions, mTORC1 signaling and protein synthesis were elevated in fasted mice in association with repressed REDD1 expression relative to nonstimulated controls. Feeding coupled with contractions further elevated mTORC1 signaling, whereas REDD1 protein expression was repressed compared with either feeding or contractions alone. Basal mTORC1 signaling and protein synthesis were elevated in REDD1-null compared with wild-type mice. The magnitude of the increase in mTORC1 signaling was similar in both wild-type and REDD1-null mice, but, unlike wild-type mice, muscle contractions did not stimulate protein synthesis in mice deficient for REDD1, presumably because basal rates were already elevated. Overall, the data demonstrate that REDD1 expression contributes to the modulation of mTORC1 signaling following feeding- and contraction-induced activation of the pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REDD2 expression in rat skeletal muscle correlates with nutrient-induced activation of mTORC1: responses to aging, immobilization, and remobilization.

In a previous study (Kelleher AR, Kimball SR, Dennis MD, Schilder RJ, and Jefferson LS. Am J Physiol Endocrinol Metab 304: E229-236, 2013.), we observed a rapid (i.e., 1-3 days) immobilization-induced repression of mechanistic target of rapamycin complex 1 (mTORC1) signaling in hindlimb skeletal muscle of young (2-mo-old) rats that was associated with elevated expression of regulated in develop...

متن کامل

REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy.

REDD1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. REDD1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, REDD1 function seems to be tissue and stress dependent, and its role in ...

متن کامل

Endurance exercise induces REDD1 expression and transiently decreases mTORC1 signaling in rat skeletal muscle

Working muscle conserves adenosine triphosphate (ATP) for muscle contraction by attenuating protein synthesis through several different pathways. Regulated in development and DNA damage response 1 (REDD1) is one candidate protein that can itself attenuate muscle protein synthesis during muscle contraction. In this study, we investigated whether endurance exercise induces REDD1 expression in ass...

متن کامل

Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency.

Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-...

متن کامل

mTORC1 Dependent Regulation of REDD1 Protein Stability

REDD1 is known to be transcriptionally upregulated in hypoxia. During hypoxic stress, REDD1 plays an important role as a mediator of mTORC1 inhibition. REDD1 is also subject to highly dynamic transcriptional regulation in response to a variety of other stress signals. In addition, the REDD1 protein is highly unstable. However, it is currently not well understood how REDD1 protein stability is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 307 8  شماره 

صفحات  -

تاریخ انتشار 2014